Ksp Cheat Sheet



Delta v calculator
(Redirected from Cheat Sheet)


Kerbal Space Program rocket scientist's cheat sheet: Delta-v maps, equations and more for your reference so you can get from here to there and back again.

Jan 25, 2018 - Gr. 12 Chemical Systems and Equilibrium Cheat Sheet. Ksp (Solubility product constant): the product of the conc of ions in a saturated. With the release of KSP 0.90.0, 'Beta Than Ever', Kerbals have specific skill sets such as Pilot, Scientist, and Engineer. 334 votes, 39 comments. 1.2m members in the KerbalSpaceProgram community. The Kerbal Space Program subreddit. For all your gaming related, space. KSP Controls Author: Richard Jones Created Date: 4/10/2013 5:40:57 AM. Credit for the center image: u/gmiezis from his high-res loading screen for KSP. If anyone is interested I can upload the.psd file so the action groups can be edited. Edit: wow thanks for all the support everyone. I will post the psd when I get home from work. And thanks for pointing out incorrect info. I will verify and fix once I have time. A collection of helpful cheat sheets for the game Kerbal Space Program by SQUAD - Kowgan/kspcheatsheets.

  • 1Mathematics
    • 1.3Delta-v (Δv)
  • 2Math examples

Mathematics

Thrust-to-weight ratio (TWR)

→ See also: Thrust-to-weight ratio

This is Newton's Second Law. If the ratio is less than 1 the craft will not lift off the ground. Note that the local gravitational acceleration, which is usually the surface gravity of the body the rocket is starting from, is required.

TWR=FTmg>1{displaystyle {text{TWR}}={frac {F_{T}}{mcdot g}}>1}
Where:
  • FT{displaystyle F_{T}} is the thrust of the engines
  • m{displaystyle m} the total mass of the craft
  • g{displaystyle g} the local gravitational acceleration (usually surface gravity)

Combined specific impulse (Isp)

→ See also: Specific impulse

If the Isp is the same for all engines in a stage, then the Isp is equal to a single engine. If the Isp is different for engines in a single stage, then use the following equation:

Isp=(F1+F2+)F1Isp1+F2Isp2+{displaystyle I_{sp}={frac {(F_{1}+F_{2}+dots )}{{frac {F_{1}}{I_{sp1}}}+{frac {F_{2}}{I_{sp2}}}+dots }}}

Delta-v (Δv)

Basic calculation

→ See also: Tutorial:Advanced Rocket Design

Basic calculation of a rocket's Δv. Use the atmospheric and vacuum thrust values for atmospheric and vacuum Δv, respectively.

Δv=ln(MstartMend)Isp9.81ms2{displaystyle Delta {v}=lnleft({frac {M_{start}}{M_{end}}}right)cdot I_{sp}cdot 9.81{frac {m}{s^{2}}}}
Where:
  • Δv{displaystyle Delta {v}} is the velocity change possible in m/s
  • Mstart{displaystyle M_{start}} is the starting mass in the same unit as Mend{displaystyle M_{end}}
  • Mend{displaystyle M_{end}} is the end mass in the same unit as Mstart{displaystyle M_{start}}
  • Isp{displaystyle I_{sp}} is the specific impulse of the engine in seconds

True Δv of a stage that crosses from atmosphere to vacuum

Body Δvout
Kerbin 2500 m/s
other bodies' data missing

Calculation of a rocket stage's Δv, taking into account transitioning from atmosphere to vacuum. Δvout is the amount of Δv required to leave a body's atmosphere, not reach orbit. This equation is useful to figure out the actual Δv of a stage that transitions from atmosphere to vacuum.

ΔvT=ΔvatmΔvoutΔvatmΔvvac+Δvout{displaystyle Delta {v}_{T}={frac {Delta {v}_{atm}-Delta {v}_{out}}{Delta {v}_{atm}}}cdot Delta {v}_{vac}+Delta {v}_{out}}

Maps

Various fan-made maps showing the Δv required to travel to a certain body.

Subway style Δv map (KSP 1.2.1):


Total Δv values

Δv change values

Δv with Phase Angles

Precise Total Δv values

Releases · Kowgan/ksp_cheat_sheets · GitHub

WAC's Δv Map for KSP 1.0.4

Maximum Δv chart

This chart is a quick guide to what engine to use for a single stage interplanetary ship. No matter how much fuel you add you will never reach these ΔV without staging to shed mass or using the slingshot maneuver. (These calculations use a full/empty fuel-tank mass ratio of 9 for all engines except those noted.)
ISP(Vac) (s) Max Δv (m/s) Engines Remarks
250 5249 O-10 'Puff' Monopropellant (max full/empty mass ratio = 8.5)
290 6249 LV-1R 'Spider'
24-77 'Twitch'
300 6464 KR-1x2 'Twin-Boar'
305 6572 CR-7 R.A.P.I.E.R.
Mk-55 'Thud'
310 6680 LV-T30 'Reliant'
RE-M3 'Mainsail'
315 6787 LV-1 'Ant'
KS-25 'Vector'
KS-25x4 'Mammoth'
320 6895 48-7S 'Spark'
LV-T45 'Swivel'
RE-I5 'Skipper'
340 7326 KR-2L+ 'Rhino'
T-1 'Dart'
345 7434 LV-909 'Terrier'
350 7542 RE-L10 'Poodle'
800 17238 LV-N 'Nerv'
4200 58783 IX-6315 'Dawn' Xenon (max full/empty mass ratio = 4.167)

(Version: 1.6.1)

Math examples

TWR

  • Copy template:
TWR = F / (m * g) > 1

Isp

  1. When Isp is the same for all engines in a stage, then the Isp is equal to a single engine. So six 200 Isp engines still yields only 200 Isp.
  2. When Isp is different for engines in a single stage, then use the following equation:
Sheet

Kerbal Space Program Delta V Map

  • Equation:

Isp=(F1+F2+)F1Isp1+F2Isp2+{displaystyle I_{sp}={frac {(F_{1}+F_{2}+dots )}{{frac {F_{1}}{I_{sp1}}}+{frac {F_{2}}{I_{sp2}}}+dots }}}

  • Simplified:
Isp = ( F1 + F2 + .. ) / ( ( F1 / Isp1 ) + ( F2 / Isp2 ) + .. )
  • Explained:
Isp = ( Force of thrust of 1st engine + Force of thrust of 2nd engine..and so on.. ) / ( ( Force of thrust of 1st engine / Isp of 1st engine ) + ( Force of thrust of 2nd engine / Isp of 2nd engine ) + ..and so on.. )
  • Example:
Two engines, one rated 200 newtons and 120 seconds Isp ; another engine rated 50 newtons and 200 seconds Isp.
Isp = (200 newtons + 50 newtons) / ( ( 200 newtons / 120 ) + ( 50 newtons / 200 ) = 130.4347826 seconds Isp

Δv

  1. For atmospheric Δv value, use atmospheric Isp{displaystyle I_{sp}} values.
  2. For vacuum Δv value, use vacuum Isp{displaystyle I_{sp}} values.
  3. Use this equation to figure out the Δv per stage:
  • Equation:

Δv=ln(MstartMdry)Isp9.81ms2{displaystyle Delta {v}=lnleft({frac {M_{start}}{M_{dry}}}right)cdot I_{sp}cdot 9.81{frac {m}{s^{2}}}}

  • Simplified:
Δv = ln ( Mstart / Mdry ) * Isp * g
  • Explained:
Δv = ln ( starting mass / dry mass ) X Isp X 9.81
  • Example:
Single stage rocket that weighs 23 tons when full, 15 tons when fuel is emptied, and engine that outputs 120 seconds Isp.
Δv = ln ( 23 Tons / 15 Tons ) × 120 seconds Isp × 9.81m/s² = Total Δv of 503.0152618 m/s

Maximum Δv

Simplified version of the Δv calculation to find the maximum Δv a craft with the given ISP could hope to achieve. This is done by using a magic 0 mass engine and not having a payload.
  • Equation:
Δv=21.576745349086Isp{displaystyle Delta {v}=21.576745349086cdot I_{sp}}
  • Simplified:
Δv =21.576745349086 * Isp
  • Explained / Examples:
This calculation only uses the mass of the fuel tanks and so the ln ( Mstart / Mdry ) part of the Δv equation has been replaced by a constant as Mstart / Mdry is always 9 (or worse with some fuel tanks) regardless of how many fuel tanks you use.
The following example will use a single stage and fuel tanks in the T-100 to Jumbo 64 range with an engine that outputs 380 seconds Isp.
Δv = ln ( 18 Tons / 2 Tons ) × 380 seconds Isp × 9.81m/s² = Maximum Δv of 8199.1632327878 m/s
Δv = 2.1972245773 × 380 seconds Isp × 9.82m/s² = Maximum Δv of 8199.1632327878 m/s (Replaced the log of mass with a constant as the ratio of total mass to dry mass is constant regardless of the number of tanks used as there is no other mass involved)
Δv = 21.576745349086 × 380 seconds Isp = Maximum Δv of 8199.1632327878 m/s (Reduced to its most simple form by combining all the constants)

True Δv

  1. How to calculate the Δv of a rocket stage that transitions from Kerbin atmosphere to vacuum.
  2. Assumption: It takes roughly 2500 m/s of Δv to escape Kerbin's atmosphere before vacuum Δv values take over for the stage powering the transition (actual value ranges between 2000 m/s and 3400 m/s depending on ascent). Note that, as of KSP 1.3.1, around 3800 m/s of Δv is required to reach an 80km orbit from the KSC.
  3. Note: This equation is a guess, an approximation, and is not 100% accurate. Per forum user stupid_chris who came up with the equation: 'The results will vary a bit depending on your TWR and such, but it should usually be pretty darn accurate.'
  • Equation for Kerbin atmospheric escape:

ΔvT=ΔvatmΔvoutΔvatmΔvvac+Δvout{displaystyle Delta {v}_{T}={frac {Delta {v}_{atm}-Delta {v}_{out}}{Delta {v}_{atm}}}cdot Delta {v}_{vac}+Delta {v}_{out}}

  • Simplified:
True Δv = ( ( Δv atm - 2500 ) / Δv atm ) * Δv vac + 2500
  • Explained:
True Δv = ( ( Total Δv in atmosphere - 2500 m/s) / Total Δv in atmosphere ) X Total Δv in vacuum + 2500
  • Example:
Single stage with total atmospheric Δv of 5000 m/s, and rated 6000 Δv in vacuum.
Transitional Δv = ( ( 5000 Δv atm - 2500 Δv required to escape Kerbin atmosphere ) / 5000 Δv atm ) X 6000 Δv vac + 2500 Δv required to escape Kerbin atmosphere = Total Δv of 5500 m/s

See also

Retrieved from 'https://wiki.kerbalspaceprogram.com/index.php?title=Cheat_sheet&oldid=97452'
< Cheat Sheet

Kerbal Space Program Raketentechnikers cheat sheet: Delta-v maps, Gleichungen und mehr als Vorlagen, um immer wieder darauf zurückgreifen zu können.

Chemical
  • 1Mathematik
    • 1.3Delta-v (Δv)
  • 2Mathematische Beispiele

Mathematik

Schub-Gewichtsverhältnis (TWR)

Template:Siehe auchDas ist Newtons zweites Gesetz. Die Rakete verlässt den Boden nicht, wenn das Verhältnis weniger als 1 ist. Beachte dass die lokale Fallbeschleunigung, welche normalerweise die Anziehungskraft des Körper auf dem die Rakete start ist, benötigt wird.

TWR=FTmg>1{displaystyle {text{TWR}}={frac {F_{T}}{mcdot g}}>1}

Kombination spezifischer Impulse(Isp)

Template:Siehe auchWenn Isp für alle Antriebe in einer Stufe gleich ist, dann ist Isp gleich zu einem einzelnen Antrieb. Wenn Isp unterschiedlich für Antriebe in einer Stufe ist, dann gilt folgende Gleichung:

2002 mercury 75 hp 2 stroke manual. Isp=(F1+F2+)F1Isp1+F2Isp2+{displaystyle I_{sp}={frac {(F_{1}+F_{2}+dots )}{{frac {F_{1}}{I_{sp1}}}+{frac {F_{2}}{I_{sp2}}}+dots }}}

Delta-v (Δv)

Einfache Berechnung

Template:Siehe auchBenutze für die einfach Berechnung von Δv die Werte für den atmosphärischen- und Vakuumantrieb, für die Δv Werte der Atmosphere und des Vakuums.

Δv=ln(MstartMend)Isp9.81ms2{displaystyle Delta {v}=lnleft({frac {M_{start}}{M_{end}}}right)cdot I_{sp}cdot 9.81{frac {m}{s^{2}}}}

Wahre Δv Wert eines Antriebs der von der Atmosphäre zum Vakuum übergeht

Planet Δvout
Kerbin 2500 m/s
Werte anderer Planeten fehlen

Die Berechnung von Δv in einer Raketenstufe, bei Berücksichtigung des Übergans von Atmosphäre zu Vakuum. Δvout ist die Menge an Δv benötigt um die Atmosphäre eines Planetens zu verlassen, nicht um die Umlaufbahn zu erreichen. Diese Gleichung ist sinnvoll um den tatsächlichen Wert von Δv einer Stufe, die von der Atmospähre ins Vakuum übergeht herauszufinden.

ΔvT=ΔvatmΔvoutΔvatmΔvvac+Δvout{displaystyle Delta {v}_{T}={frac {Delta {v}_{atm}-Delta {v}_{out}}{Delta {v}_{atm}}}cdot Delta {v}_{vac}+Delta {v}_{out}}

Maps

Verschiedene englischsprachige Maps die den benötigten Wert von Δv angeben, um einen bestimmten Planeten zu erreichen.

Kerbal Space Program Cheat Engine

U-Bahn ähnliche Δv map (KSP 1.2.1):


Ganze Δv Werte

Δv Änderungswerte

Δv mit Phasen Winkel

Genaue ganze Δv Werte

WAC's Δv Map für KSP 1.0.4

Maximales Δv Tabelle

Cheat Sheet For Chemical Equilibrium

Diese Tabelle ist eine kurze Guide, die zeigt welchen Antrieb man für ein Interplanetaren Schiff, mit einer einzelnen Stufe, benutzen soll. Egal wie viel Treibstoff man benutzt, man wird nie diese ΔV Werte erreichen ohne Abstufungen um Masse zu verlieren oder das Slingshot Manöver zu verwenden. (Diese Berechnungen verwenden ein Voll-zu-Leerer Treibstofftank Massenverhältnis von 9 für alle Antriebe, außer die erwähnten.)
ISP(Vac) (s) Maximales Δv (m/s) Antriebe Anmerkungen
250 5249 O-10 'Puff' Monopropellant (Maximales Voll/leer Massenverhältnis = 8.5)
290 6249 LV-1R 'Spider'
24-77 'Twitch'
300 6464 KR-1x2 'Twin-Boar'
305 6572 CR-7 R.A.P.I.E.R.
Mk-55 'Thud'
310 6680 LV-T30 'Reliant'
RE-M3 'Mainsail'
315 6787 LV-1 'Ant'
KS-25 'Vector'
KS-25x4 'Mammoth'
320 6895 48-7S 'Spark'
LV-T45 'Swivel'
RE-I5 'Skipper'
340 7326 KR-2L+ 'Rhino'
T-1 'Dart'
345 7434 LV-909 'Terrier'
350 7542 RE-L10 'Poodle'
800 17238 LV-N 'Nerv'
4200 58783 IX-6315 'Dawn' Xenon (Maximales Voll/leer Massenverhältnis = 4.167)

(Version: 1.6.1)

Mathematische Beispiele

TWR

  • Vorlage zum kopieren:
TWR = F / (m * g) > 1
KSP

Isp

  1. Wenn Isp für alle Antriebe in einer Stufe gleich ist, Isp ist das selbe wie von einem einzigen Antrieb. Sechs 200 Isp Antriebe bringen also weiterhin 200 Isp.
  2. Wenn Isp unterschiedlich ist für die Antriebe einer einzelnen Stufe, benutzte folgende Gleichung:
  • Gleichung:

Isp=(F1+F2+)F1Isp1+F2Isp2+{displaystyle I_{sp}={frac {(F_{1}+F_{2}+dots )}{{frac {F_{1}}{I_{sp1}}}+{frac {F_{2}}{I_{sp2}}}+dots }}}

  • Vereinfacht:
Isp = ( F1 + F2 + .. ) / ( ( F1 / Isp1 ) + ( F2 / Isp2 ) + .. )
  • Erklärt:
Isp = (Antriebskraft des ersten Antriebs, Antriebskraft des zweiten Antriebs, und so weiter.. ) / ( ( Force of thrust of 1st engine / Isp of 1st engine ) + ( Force of thrust of 2nd engine / Isp of 2nd engine ) + ..and so on.. )
  • Example:
Two engines, one rated 200 newtons and 120 seconds Isp ; another engine rated 50 newtons and 200 seconds Isp.
Isp = (200 newtons + 50 newtons) / ( ( 200 newtons / 120 ) + ( 50 newtons / 200 ) = 130.4347826 seconds Isp

Δv

  1. For atmospheric Δv value, use atmospheric Isp{displaystyle I_{sp}} values.
  2. For vacuum Δv value, use vacuum Isp{displaystyle I_{sp}} values.
  3. Use this equation to figure out the Δv per stage:
  • Equation:

Δv=ln(MstartMdry)Isp9.81ms2{displaystyle Delta {v}=lnleft({frac {M_{start}}{M_{dry}}}right)cdot I_{sp}cdot 9.81{frac {m}{s^{2}}}}

  • Simplified:
Δv = ln ( Mstart / Mdry ) * Isp * g
  • Explained:
Δv = ln ( starting mass / dry mass ) X Isp X 9.81
  • Example:
Single stage rocket that weighs 23 tons when full, 15 tons when fuel is emptied, and engine that outputs 120 seconds Isp.
Δv = ln ( 23 Tons / 15 Tons ) × 120 seconds Isp × 9.81m/s² = Total Δv of 503.0152618 m/s

Maximum Δv

Simplified version of the Δv calculation to find the maximum Δv a craft with the given ISP could hope to achieve. This is done by using a magic 0 mass engine and not having a payload.
  • Equation:
Δv=21.576745349086Isp{displaystyle Delta {v}=21.576745349086cdot I_{sp}}

Ksp Dv Cheat Sheet

  • Simplified:
Δv =21.576745349086 * Isp
  • Explained / Examples:
This calculation only uses the mass of the fuel tanks and so the ln ( Mstart / Mdry ) part of the Δv equation has been replaced by a constant as Mstart / Mdry is always 9 (or worse with some fuel tanks) regardless of how many fuel tanks you use.
The following example will use a single stage and fuel tanks in the T-100 to Jumbo 64 range with an engine that outputs 380 seconds Isp.
Δv = ln ( 18 Tons / 2 Tons ) × 380 seconds Isp × 9.81m/s² = Maximum Δv of 8199.1632327878 m/s
Δv = 2.1972245773 × 380 seconds Isp × 9.82m/s² = Maximum Δv of 8199.1632327878 m/s (Replaced the log of mass with a constant as the ratio of total mass to dry mass is constant regardless of the number of tanks used as there is no other mass involved)
Δv = 21.576745349086 × 380 seconds Isp = Maximum Δv of 8199.1632327878 m/s (Reduced to its most simple form by combining all the constants)

True Δv

  1. How to calculate the Δv of a rocket stage that transitions from Kerbin atmosphere to vacuum.
  2. Assumption: It takes roughly 2500 m/s of Δv to escape Kerbin's atmosphere before vacuum Δv values take over for the stage powering the transition (actual value ranges between 2000 m/s and 3400 m/s depending on ascent). Note that, as of KSP 1.3.1, around 3800 m/s of Δv is required to reach an 80km orbit from the KSC.
  3. Note: This equation is a guess, an approximation, and is not 100% accurate. Per forum user stupid_chris who came up with the equation: 'The results will vary a bit depending on your TWR and such, but it should usually be pretty darn accurate.'
  • Equation for Kerbin atmospheric escape:

ΔvT=ΔvatmΔvoutΔvatmΔvvac+Δvout{displaystyle Delta {v}_{T}={frac {Delta {v}_{atm}-Delta {v}_{out}}{Delta {v}_{atm}}}cdot Delta {v}_{vac}+Delta {v}_{out}}

  • Simplified:
True Δv = ( ( Δv atm - 2500 ) / Δv atm ) * Δv vac + 2500
  • Explained:
True Δv = ( ( Total Δv in atmosphere - 2500 m/s) / Total Δv in atmosphere ) X Total Δv in vacuum + 2500
  • Example:
Single stage with total atmospheric Δv of 5000 m/s, and rated 6000 Δv in vacuum.
Transitional Δv = ( ( 5000 Δv atm - 2500 Δv required to escape Kerbin atmosphere ) / 5000 Δv atm ) X 6000 Δv vac + 2500 Δv required to escape Kerbin atmosphere = Total Δv of 5500 m/s

Ksp Keyboard Cheat Sheet

See also

KSP 1.2 Debug/Cheat Menu - Technical Support (PC, Modded ..

Retrieved from 'https://wiki.kerbalspaceprogram.com/index.php?title=Cheat_Sheet/de&oldid=99823'